Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches.

Identifieur interne : 000105 ( Main/Exploration ); précédent : 000104; suivant : 000106

Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches.

Auteurs : M J L Pez-Grueso [Espagne] ; R. González-Ojeda [Espagne] ; R. Requejo-Aguilar [Espagne] ; B. Mcdonagh [Irlande (pays)] ; C A Fuentes-Almagro [Espagne] ; J. Muntané [Irlande (pays)] ; J A Bárcena [Espagne] ; C A Padilla [Espagne]

Source :

RBID : pubmed:30639960

Descripteurs français

English descriptors

Abstract

The aim of the present study was to define the role of Trx and Grx on metabolic thiol redox regulation and identify their protein and metabolite targets. The hepatocarcinoma-derived HepG2 cell line under both normal and oxidative/nitrosative conditions by overexpression of NO synthase (NOS3) was used as experimental model. Grx1 or Trx1 silencing caused conspicuous changes in the redox proteome reflected by significant changes in the reduced/oxidized ratios of specific Cys's including several glycolytic enzymes. Cys91 of peroxiredoxin-6 (PRDX6) and Cys153 of phosphoglycerate mutase-1 (PGAM1), that are known to be involved in progression of tumor growth, are reported here for the first time as specific targets of Grx1. A group of proteins increased their CysRED/CysOX ratio upon Trx1 and/or Grx1 silencing, including caspase-3 Cys163, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) Cys247 and triose-phosphate isomerase (TPI) Cys255 likely by enhancement of NOS3 auto-oxidation. The activities of several glycolytic enzymes were also significantly affected. Glycolysis metabolic flux increased upon Trx1 silencing, whereas silencing of Grx1 had the opposite effect. Diversion of metabolic fluxes toward synthesis of fatty acids and phospholipids was observed in siRNA-Grx1 treated cells, while siRNA-Trx1 treated cells showed elevated levels of various sphingomyelins and ceramides and signs of increased protein degradation. Glutathione synthesis was stimulated by both treatments. These data indicate that Trx and Grx have both, common and specific protein Cys redox targets and that down regulation of either redoxin has markedly different metabolic outcomes. They reflect the delicate sensitivity of redox equilibrium to changes in any of the elements involved and the difficulty of forecasting metabolic responses to redox environmental changes.

DOI: 10.1016/j.redox.2018.11.007
PubMed: 30639960
PubMed Central: PMC6327914


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches.</title>
<author>
<name sortKey="L Pez Grueso, M J" sort="L Pez Grueso, M J" uniqKey="L Pez Grueso M" first="M J" last="L Pez-Grueso">M J L Pez-Grueso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez Ojeda, R" sort="Gonzalez Ojeda, R" uniqKey="Gonzalez Ojeda R" first="R" last="González-Ojeda">R. González-Ojeda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biomedicine of Seville (IBIS), IBiS/"Virgen del Rocío" University Hospital/CSIC/University of Seville, Seville, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Institute of Biomedicine of Seville (IBIS), IBiS/"Virgen del Rocío" University Hospital/CSIC/University of Seville, Seville</wicri:regionArea>
<wicri:noRegion>Seville</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Requejo Aguilar, R" sort="Requejo Aguilar, R" uniqKey="Requejo Aguilar R" first="R" last="Requejo-Aguilar">R. Requejo-Aguilar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mcdonagh, B" sort="Mcdonagh, B" uniqKey="Mcdonagh B" first="B" last="Mcdonagh">B. Mcdonagh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. of Physiology, School of Medicine, NUI Galway, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Dept. of Physiology, School of Medicine, NUI Galway</wicri:regionArea>
<wicri:noRegion>NUI Galway</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fuentes Almagro, C A" sort="Fuentes Almagro, C A" uniqKey="Fuentes Almagro C" first="C A" last="Fuentes-Almagro">C A Fuentes-Almagro</name>
<affiliation wicri:level="1">
<nlm:affiliation>SCAI, University of Córdoba, Córdoba, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>SCAI, University of Córdoba, Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Muntane, J" sort="Muntane, J" uniqKey="Muntane J" first="J" last="Muntané">J. Muntané</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. of Physiology, School of Medicine, NUI Galway, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Dept. of Physiology, School of Medicine, NUI Galway</wicri:regionArea>
<wicri:noRegion>NUI Galway</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barcena, J A" sort="Barcena, J A" uniqKey="Barcena J" first="J A" last="Bárcena">J A Bárcena</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain. Electronic address: ja.barcena@uco.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Padilla, C A" sort="Padilla, C A" uniqKey="Padilla C" first="C A" last="Padilla">C A Padilla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30639960</idno>
<idno type="pmid">30639960</idno>
<idno type="doi">10.1016/j.redox.2018.11.007</idno>
<idno type="pmc">PMC6327914</idno>
<idno type="wicri:Area/Main/Corpus">000172</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000172</idno>
<idno type="wicri:Area/Main/Curation">000172</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000172</idno>
<idno type="wicri:Area/Main/Exploration">000172</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches.</title>
<author>
<name sortKey="L Pez Grueso, M J" sort="L Pez Grueso, M J" uniqKey="L Pez Grueso M" first="M J" last="L Pez-Grueso">M J L Pez-Grueso</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gonzalez Ojeda, R" sort="Gonzalez Ojeda, R" uniqKey="Gonzalez Ojeda R" first="R" last="González-Ojeda">R. González-Ojeda</name>
<affiliation wicri:level="1">
<nlm:affiliation>Institute of Biomedicine of Seville (IBIS), IBiS/"Virgen del Rocío" University Hospital/CSIC/University of Seville, Seville, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Institute of Biomedicine of Seville (IBIS), IBiS/"Virgen del Rocío" University Hospital/CSIC/University of Seville, Seville</wicri:regionArea>
<wicri:noRegion>Seville</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Requejo Aguilar, R" sort="Requejo Aguilar, R" uniqKey="Requejo Aguilar R" first="R" last="Requejo-Aguilar">R. Requejo-Aguilar</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mcdonagh, B" sort="Mcdonagh, B" uniqKey="Mcdonagh B" first="B" last="Mcdonagh">B. Mcdonagh</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. of Physiology, School of Medicine, NUI Galway, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Dept. of Physiology, School of Medicine, NUI Galway</wicri:regionArea>
<wicri:noRegion>NUI Galway</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fuentes Almagro, C A" sort="Fuentes Almagro, C A" uniqKey="Fuentes Almagro C" first="C A" last="Fuentes-Almagro">C A Fuentes-Almagro</name>
<affiliation wicri:level="1">
<nlm:affiliation>SCAI, University of Córdoba, Córdoba, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>SCAI, University of Córdoba, Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Muntane, J" sort="Muntane, J" uniqKey="Muntane J" first="J" last="Muntané">J. Muntané</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. of Physiology, School of Medicine, NUI Galway, Ireland.</nlm:affiliation>
<country xml:lang="fr">Irlande (pays)</country>
<wicri:regionArea>Dept. of Physiology, School of Medicine, NUI Galway</wicri:regionArea>
<wicri:noRegion>NUI Galway</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Barcena, J A" sort="Barcena, J A" uniqKey="Barcena J" first="J A" last="Bárcena">J A Bárcena</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain. Electronic address: ja.barcena@uco.es.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Padilla, C A" sort="Padilla, C A" uniqKey="Padilla C" first="C A" last="Padilla">C A Padilla</name>
<affiliation wicri:level="1">
<nlm:affiliation>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba</wicri:regionArea>
<wicri:noRegion>Córdoba</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Redox biology</title>
<idno type="eISSN">2213-2317</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cysteine (metabolism)</term>
<term>Energy Metabolism (genetics)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Gene Silencing (MeSH)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Glycolysis (genetics)</term>
<term>Hep G2 Cells (MeSH)</term>
<term>Humans (MeSH)</term>
<term>Metabolic Networks and Pathways (MeSH)</term>
<term>Metabolomics (methods)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Proteome (MeSH)</term>
<term>Proteomics (methods)</term>
<term>Sulfhydryl Compounds (metabolism)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Cellules HepG2 (MeSH)</term>
<term>Cystéine (métabolisme)</term>
<term>Extinction de l'expression des gènes (MeSH)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Glycolyse (génétique)</term>
<term>Humains (MeSH)</term>
<term>Métabolisme énergétique (génétique)</term>
<term>Métabolomique (méthodes)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéome (MeSH)</term>
<term>Protéomique (méthodes)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Thiols (métabolisme)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (métabolisme)</term>
<term>Voies et réseaux métaboliques (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Cysteine</term>
<term>Glutaredoxins</term>
<term>Sulfhydryl Compounds</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Energy Metabolism</term>
<term>Glycolysis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Glycolyse</term>
<term>Métabolisme énergétique</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Metabolomics</term>
<term>Proteomics</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Cystéine</term>
<term>Glutarédoxines</term>
<term>Thiols</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Métabolomique</term>
<term>Protéomique</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation</term>
<term>Gene Silencing</term>
<term>Hep G2 Cells</term>
<term>Humans</term>
<term>Metabolic Networks and Pathways</term>
<term>Oxidation-Reduction</term>
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules HepG2</term>
<term>Extinction de l'expression des gènes</term>
<term>Humains</term>
<term>Oxydoréduction</term>
<term>Protéome</term>
<term>Régulation de l'expression des gènes</term>
<term>Voies et réseaux métaboliques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The aim of the present study was to define the role of Trx and Grx on metabolic thiol redox regulation and identify their protein and metabolite targets. The hepatocarcinoma-derived HepG2 cell line under both normal and oxidative/nitrosative conditions by overexpression of NO synthase (NOS3) was used as experimental model. Grx1 or Trx1 silencing caused conspicuous changes in the redox proteome reflected by significant changes in the reduced/oxidized ratios of specific Cys's including several glycolytic enzymes. Cys
<sup>91</sup>
of peroxiredoxin-6 (PRDX6) and Cys
<sup>153</sup>
of phosphoglycerate mutase-1 (PGAM1), that are known to be involved in progression of tumor growth, are reported here for the first time as specific targets of Grx1. A group of proteins increased their Cys
<sub>RED</sub>
/Cys
<sub>OX</sub>
ratio upon Trx1 and/or Grx1 silencing, including caspase-3 Cys
<sup>163</sup>
, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) Cys
<sup>247</sup>
and triose-phosphate isomerase (TPI) Cys
<sup>255</sup>
likely by enhancement of NOS3 auto-oxidation. The activities of several glycolytic enzymes were also significantly affected. Glycolysis metabolic flux increased upon Trx1 silencing, whereas silencing of Grx1 had the opposite effect. Diversion of metabolic fluxes toward synthesis of fatty acids and phospholipids was observed in siRNA-Grx1 treated cells, while siRNA-Trx1 treated cells showed elevated levels of various sphingomyelins and ceramides and signs of increased protein degradation. Glutathione synthesis was stimulated by both treatments. These data indicate that Trx and Grx have both, common and specific protein Cys redox targets and that down regulation of either redoxin has markedly different metabolic outcomes. They reflect the delicate sensitivity of redox equilibrium to changes in any of the elements involved and the difficulty of forecasting metabolic responses to redox environmental changes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30639960</PMID>
<DateCompleted>
<Year>2019</Year>
<Month>04</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">2213-2317</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<PubDate>
<Year>2019</Year>
<Month>02</Month>
</PubDate>
</JournalIssue>
<Title>Redox biology</Title>
<ISOAbbreviation>Redox Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches.</ArticleTitle>
<Pagination>
<MedlinePgn>101049</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S2213-2317(18)30917-0</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.redox.2018.11.007</ELocationID>
<Abstract>
<AbstractText>The aim of the present study was to define the role of Trx and Grx on metabolic thiol redox regulation and identify their protein and metabolite targets. The hepatocarcinoma-derived HepG2 cell line under both normal and oxidative/nitrosative conditions by overexpression of NO synthase (NOS3) was used as experimental model. Grx1 or Trx1 silencing caused conspicuous changes in the redox proteome reflected by significant changes in the reduced/oxidized ratios of specific Cys's including several glycolytic enzymes. Cys
<sup>91</sup>
of peroxiredoxin-6 (PRDX6) and Cys
<sup>153</sup>
of phosphoglycerate mutase-1 (PGAM1), that are known to be involved in progression of tumor growth, are reported here for the first time as specific targets of Grx1. A group of proteins increased their Cys
<sub>RED</sub>
/Cys
<sub>OX</sub>
ratio upon Trx1 and/or Grx1 silencing, including caspase-3 Cys
<sup>163</sup>
, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) Cys
<sup>247</sup>
and triose-phosphate isomerase (TPI) Cys
<sup>255</sup>
likely by enhancement of NOS3 auto-oxidation. The activities of several glycolytic enzymes were also significantly affected. Glycolysis metabolic flux increased upon Trx1 silencing, whereas silencing of Grx1 had the opposite effect. Diversion of metabolic fluxes toward synthesis of fatty acids and phospholipids was observed in siRNA-Grx1 treated cells, while siRNA-Trx1 treated cells showed elevated levels of various sphingomyelins and ceramides and signs of increased protein degradation. Glutathione synthesis was stimulated by both treatments. These data indicate that Trx and Grx have both, common and specific protein Cys redox targets and that down regulation of either redoxin has markedly different metabolic outcomes. They reflect the delicate sensitivity of redox equilibrium to changes in any of the elements involved and the difficulty of forecasting metabolic responses to redox environmental changes.</AbstractText>
<CopyrightInformation>Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>López-Grueso</LastName>
<ForeName>M J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>González-Ojeda</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Institute of Biomedicine of Seville (IBIS), IBiS/"Virgen del Rocío" University Hospital/CSIC/University of Seville, Seville, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Requejo-Aguilar</LastName>
<ForeName>R</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McDonagh</LastName>
<ForeName>B</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Dept. of Physiology, School of Medicine, NUI Galway, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Fuentes-Almagro</LastName>
<ForeName>C A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>SCAI, University of Córdoba, Córdoba, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Muntané</LastName>
<ForeName>J</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Dept. of Physiology, School of Medicine, NUI Galway, Ireland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bárcena</LastName>
<ForeName>J A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain. Electronic address: ja.barcena@uco.es.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Padilla</LastName>
<ForeName>C A</ForeName>
<Initials>CA</Initials>
<AffiliationInfo>
<Affiliation>Dept. Biochemistry and Molecular Biology, University of Córdoba, Córdoba, Spain; Maimónides Biomedical Research Institute of Córdoba (IMIBIC), Córdoba, Spain.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>11</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Redox Biol</MedlineTA>
<NlmUniqueID>101605639</NlmUniqueID>
<ISSNLinking>2213-2317</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D013438">Sulfhydryl Compounds</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>K848JZ4886</RegistryNumber>
<NameOfSubstance UI="D003545">Cysteine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003545" MajorTopicYN="N">Cysteine</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="Y">Energy Metabolism</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020868" MajorTopicYN="N">Gene Silencing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006019" MajorTopicYN="N">Glycolysis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056945" MajorTopicYN="N">Hep G2 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053858" MajorTopicYN="N">Metabolic Networks and Pathways</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055432" MajorTopicYN="N">Metabolomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="N">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D040901" MajorTopicYN="N">Proteomics</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013438" MajorTopicYN="N">Sulfhydryl Compounds</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Glycolysis</Keyword>
<Keyword MajorTopicYN="Y">NO synthase</Keyword>
<Keyword MajorTopicYN="Y">Redox proteome</Keyword>
<Keyword MajorTopicYN="Y">Redoxins</Keyword>
<Keyword MajorTopicYN="Y">S-nitrosation</Keyword>
<Keyword MajorTopicYN="Y">Thiol redox regulation</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>10</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>11</Month>
<Day>08</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>11</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>4</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>1</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30639960</ArticleId>
<ArticleId IdType="pii">S2213-2317(18)30917-0</ArticleId>
<ArticleId IdType="doi">10.1016/j.redox.2018.11.007</ArticleId>
<ArticleId IdType="pmc">PMC6327914</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Chem Biol. 2015 Jul 23;22(7):965-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26165157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Jan 1;18(1):94-127</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22746677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Apr 1;26(7):966-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20147306</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 Jan 10;51(1):533-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22126412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(7):e21849</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21789187</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Dis. 2017 Jul 20;8(7):e2944</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28726775</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2016 Aug 20;25(6):300-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27353526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Aug 8;283(32):21890-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18544525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(1):44-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19131956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Diabetes. 2018 Jun;67(6):1190-1199</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29549163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2007 Sep;9(9):1471-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17576159</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2005 Jul;7(7):665-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15951807</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2012 Aug 31;425(3):656-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22846575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2016 Jul;96:99-115</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27094494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2016 Nov;16(11):680-693</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27658530</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2015 Dec;1850(12):2476-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26388496</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2016 Jan 20;24(3):115-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26159064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Jul;29(14):3991-4001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19451232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2005 Aug 8;226(1):1-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16004928</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 May 20;280(20):19888-94</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15774480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Dec 22;7:1942</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28066493</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biochem. 2002 Mar;131(3):285-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11872155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2004 Mar 1;423(1):192-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14871481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Sep 13;288(37):26512-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23861437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 Mar 22;410(6827):490-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11260719</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Respir Cell Mol Biol. 1996 Sep;15(3):410-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8810647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Sep;267(17):5313-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10951190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 May 23;320(5879):1050-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18497292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2010 Jul;9(7):1400-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20233844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2008 Dec;26(12):1367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19029910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Mar-Apr;7(3-4):348-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15706083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2005 Dec;33(Pt 6):1375-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16246122</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2014 Jul 1;74(13):3630-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24786789</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2013 Sep 24;52(38):6712-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23977830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Exp Med Biol. 2010;688:1-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20919643</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2013 Oct;63:207-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23702245</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 May;11(5):202-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22454539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Feb 24;101(8):2619-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14983058</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2012 Sep;11(9):800-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22647871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2014 Nov 7;13(11):5008-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25181601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 May 22;324(5930):1029-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19460998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Chem Biol. 2005 Aug;1(3):154-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16408020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 1998 Jan 15;12(2):149-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9436976</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2012 Nov 13;22(5):585-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23153533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Redox Biol. 2015 Dec;6:122-134</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26210445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2013;4:1790</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23653202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2013 Mar-Apr;48(2):173-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23356510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Jan 24;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29237272</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2016 May;94:27-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26876649</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Aug 17;49(32):6963-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20695533</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Feb 23;271(8):4209-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8626764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2015 Oct 15;471(2):267-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26285655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2005;56:187-220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15862094</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2011 Dec 2;334(6060):1278-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22052977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Nov 1;29(13):1312-1332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28795583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2010 Mar 15;398(2):245-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19903445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2016 Nov 4;291(45):23374-23389</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27587398</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 2017 Mar 1;617:68-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27932289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2012 Aug 1;445(3):337-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22607208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2010 Jan 29;395(4):844-59</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19854201</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2016 Dec;11(12):2301-2319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27809316</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2009 Jan;37(1):1-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19033363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1994 May 1;221(3):1033-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8181459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protoc Bioinformatics. 2011 Sep;Chapter 13:Unit 13.15-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21901740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Cancer. 2010 Apr;10(4):267-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20300106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oxid Med Cell Longev. 2013;2013:932472</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23970950</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Aug 1;357(Pt 3):593-615</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11463332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteomics. 2009 May 2;72(4):677-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19367685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2018 Jan 9;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29121774</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 2004 Oct;17(10):1313-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15487891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Comp Biochem Physiol B. 1988;89(2):257-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2833374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Mar 15;14(6):1065-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20799881</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2010 Oct;9(10):2262-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20660346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12883005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Aug;267(16):4928-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2008 Feb;17(2):299-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18227433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2011 Jul 1;51(1):185-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21557999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Jun 15;14(12):2581-642</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21275844</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2011 Nov 1;15(9):2565-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21453190</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2013 Feb 7;49(3):388-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23395269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Death Differ. 2009 Dec;16(12):1573-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19779498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2015 Apr 15;467(2):303-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25670069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Feb 10;18(5):491-506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22861189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2000 Oct 20;1498(1):72-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11042352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Chem. 1979 Mar;25(3):384-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">162438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Rev Camb Philos Soc. 2015 Aug;90(3):927-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25243985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jun 17;105(24):8197-202</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18287020</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 Oct 10;19(11):1220-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23157283</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
<li>Irlande (pays)</li>
</country>
</list>
<tree>
<country name="Espagne">
<noRegion>
<name sortKey="L Pez Grueso, M J" sort="L Pez Grueso, M J" uniqKey="L Pez Grueso M" first="M J" last="L Pez-Grueso">M J L Pez-Grueso</name>
</noRegion>
<name sortKey="Barcena, J A" sort="Barcena, J A" uniqKey="Barcena J" first="J A" last="Bárcena">J A Bárcena</name>
<name sortKey="Fuentes Almagro, C A" sort="Fuentes Almagro, C A" uniqKey="Fuentes Almagro C" first="C A" last="Fuentes-Almagro">C A Fuentes-Almagro</name>
<name sortKey="Gonzalez Ojeda, R" sort="Gonzalez Ojeda, R" uniqKey="Gonzalez Ojeda R" first="R" last="González-Ojeda">R. González-Ojeda</name>
<name sortKey="Padilla, C A" sort="Padilla, C A" uniqKey="Padilla C" first="C A" last="Padilla">C A Padilla</name>
<name sortKey="Requejo Aguilar, R" sort="Requejo Aguilar, R" uniqKey="Requejo Aguilar R" first="R" last="Requejo-Aguilar">R. Requejo-Aguilar</name>
</country>
<country name="Irlande (pays)">
<noRegion>
<name sortKey="Mcdonagh, B" sort="Mcdonagh, B" uniqKey="Mcdonagh B" first="B" last="Mcdonagh">B. Mcdonagh</name>
</noRegion>
<name sortKey="Muntane, J" sort="Muntane, J" uniqKey="Muntane J" first="J" last="Muntané">J. Muntané</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000105 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000105 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30639960
   |texte=   Thioredoxin and glutaredoxin regulate metabolism through different multiplex thiol switches.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30639960" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020